ontochem

OC|processor

Understanding linguistic Markush expressions in chemical patents

OntoChem IT Solutions GmbH Blücherstr. 24 06120 Halle (Saale) Germany Tel. +49 345 4780472 Fax: +49 345 4780471 mail: info@ontochem.com

ontochem IT SOLUTIONS

OntoChem is creating customized semantic chemistry search engines:

http://demo.ocminer.com

http://sciwalker.com/

Agenda

Understanding linguistic Markush expressions in chemical patents

- Markush: foundation & future
- Markush: phenotypes
- Semantic extraction of Markush data from text
- Semantic extraction of Markush data from tables

Markush: Foundation

ontochem

Eugene A. Markush

born in Budapest, Hungary, 1888, migrated to USA 1913, founded Pharma-Chemical Corporation (NJ), 1919 sold to Bayer, died in 1968

US 1,506,316, filed January 9, 1923 "Pyrazolone Dye and Process of Making the Same" after a ruling in 1925 by the US Patent Office

Claims:

1. The process for the manufacture of dyes which comprises coupling with a halogen-substituted pyrazolone, a diazotized unsulphonated material selected from the group consisting of aniline, homologues of 100 aniline and halogen substitution products of aniline. A "Markush" claim recites a list of **alternatively useable species**. ...

A Markush claim is commonly formatted as: "*selected from the group consisting of A, B, and C;*" however, the phrase "Markush claim" means any claim that recites a list of alternatively useable species **regardless of format**.

https://www.uspto.gov/web/offices/pac/mpep/s2173.html

Embodiments of the present compound include compounds of the formula (1) shown in Table 1, compounds of the formula (2) shown in Table 2, compounds of the formula (2A) shown in Table 3, compounds of the formula (2B) shown in Table 4 and compounds of the formula (2C) shown in Table 5. These compounds are the compounds disclosed in International Publication WO 2013/018928 and can be produced by the methods described in this publication.

ABLE 1										
The present compound	R ¹	R ²	R ³		R ⁵				A ³	n
1	Et	Н	Н	Н	CF ₃	Н	NMe	CH	Ν	0
2	Et	н	Н	Н	CF ₃	Н	NMe	CH	N	1
3	Et	Н	Н	Н	CF ₃	Н	NMe	CH	Ν	2
4	Et	н	CF ₃	Н	CF ₃	Н	NMe	CH	N	0
5	Et	н	CF ₃	Н	CF ₃	н	NMe	CH	N	2
6	Et	н	Н	Н	CF ₂ CF ₃	Н	NMe	CH	N	0
7	Et	н	Н	н	CF ₂ CF ₃	Н	NMe	CH	N	1
8	Et	Н	Н	Н	CF ₂ CF ₃	н	NMe	CH	N	2

Text

a compound of formula I, present in the amount of 10-20 wt%

 R^1

Text

a compound selected from a group of 2-chloro-, 2-bromo-, 2-iodo-pyridine

Text

a compound of formula I, where R¹ is selected from alkyl, cycloalkyl, aryl or heteroaryl

Julius Rebek & Stuart Kauffman

PCT/US1994/004314 RANDOM CHEMISTRY FOR THE GENERATION OF NEW COMPOUNDS

7. The method of claim 1 wherein the different organic molecules of the starting group are selected from the group consisting of alkanes, alkenes, alkynes, arenes, alcohols, ethers, amines, aldehydes, ketones, acids, esters, amides, cyclic compounds, heterocyclic compounds, organometallic compounds, hetero-atom bearing compounds, amino acids, nucleotides, and mixtures thereof.

Limiting Markush uses is ongoing:

USPTO is trying to limit Markush:

For example, if the language of a claim, given its broadest reasonable interpretation, is such that a person of ordinary skill in the relevant art would read it with **more than one** reasonable **interpretation**, then a rejection ... is appropriate.

...However, if such a practice renders the claims **indefinite** or if it results in undue multiplicity, an appropriate rejection should be made.

https://www.uspto.gov/web/offices/pac/mpep/s2173.html

Chinese patent office is increasingly granting patents with specific examples only

Protection of non-exemplified Markush covered claims / compounds / compositions is weak

Small Molecule Markush

data mining easy:

2-chloro-, 2-bromo-, or 2-iodo-pyridine

data mining impossible:

Embodiments of the present compound include compounds of the formula (1) shown in Table 1, compounds of the formula (2) shown in Table 2, compounds of the formula (2A) shown in Table 3, compounds of the formula (2B) shown in Table 4 and compounds of the formula (2C) shown in Table 5. These compounds are the compounds disclosed in International Publication WO 2013/018928 and can be produced by the methods described in this publication.

more about small molecule organic chemistry Markush: J.M. Barnard, P.M. Wright, "Towards in-house searching of Markush structures from patents" World Patent Information 31 (2009) 97–103

TABLE 1

present	R ¹	R ²		R ⁴	R ⁵	R ⁶	A ¹	A ²	A ³	n
1	Et	Н	Н	Н	CF ₃	Н	NMe	CH	N	0
2	Et	н	Н	Н	CF ₃	Н	NMe	CH	N	1
3	Et	н	Н	Н	CF ₃	Н	NMe	CH	N	2
4	Et	Н	CF ₃	Н	CF ₃	Н	NMe	CH	N	0
5	Et	Н	CF ₃	Н	CF ₃	Н	NMe	CH	N	2
6	Et	Н	Н	Н	CF ₂ CF ₃	Н	NMe	CH	N	0
7	Et	Н	Н	Н	CF ₂ CF ₃	Н	NMe	CH	N	1
8	Et	Н	Н	Н	CF ₂ CF ₃	Н	NMe	CH	N	2

ontochem IT SOLUTIONS

breadth of today's Markush type expressions:

Inventions in metallurgy, refractories, ceramics, pharmacy, pharmacology and biology are most frequently claimed under the Markush formula but purely mechanical features or process steps may also be claimed by using the Markush style of claiming.

https://www.uspto.gov/web/offices/pac/mpep/s2173.html

collection of small organic compounds

formulations (tablets, cosmetics, nutrition ...)

dyes (ink jet dye compositions ...)

alloys (magnets, steel ...)

glasses & ceramics

liquid crystals (monitors ...)

Markush in Text: Formulations

ontochem

Glass example: EP-1906937-B1

Markush type claims

1. A pharmaceutical composition comprising:

3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid (Compound 1) Form I in an amount of 100 mg or 200 mg;

and

one or more excipients selected from a filler, a disintegrant, a surfactant, a diluent, a binder, a glidant, a lubricant, a colorant, and a fragrance, or any combination thereof,

wherein the pharmaceutical composition is in tablet form.

2. The pharmaceutical composition of claim 1, wherein the pharmaceutical composition comprises a filler which is microcrystalline cellulose and is present in an amount ranging from 10 wt% to 60 wt% by weight of the composition.

3. The pharmaceutical composition of claim 2, wherein the microcrystalline cellulose is present in an amount of 20 wt % to 45 wt% by weight of the composition.

example

In another embodiment, the invention provides a pharmaceutical composition comprising the following components:										
High Shear Granule Blend	mg									
Compound 1 Form I or Form II	100									
Microcrystalline cellulose	33.3									
Mannitol	21.7									
Croscarmellose Sodium	3.3									
Polyvinylpyrrolidone	4.4									
Sodium Lauryl Sulfate	1.1									
Core Tablet Composition (100 mg dose, 197 mg image)	mg									
High Shear Granule Blend	163.9									
Microcrystalline cellulose	27.6									
Croscarmellose Sodium	3.9									
Magnesium Stearate	2.0									

Markush in Text: Glass Compositions

ontochem

US-20060039426-A1: Novel ytterbium-phosphate glass

PDF

We claim:

1. A ytterbium-phosphate glass comprising: 60 to 75 mole percent P_2O_5 , 10 to 30 mole percent Yb_2O_3 ; and from 0 to 30 mole percent of a combination of two or more of the following X_2O_3 , R_2O , and MO wherein;

- X₂O₃ is present in an amount of from 0 to 26 mole percent and X is selected from the group consisting of Al, B, La, Sc, Y, and mixtures thereof;
- R₂O is present in an amount of from 0 to 26 mole percent and R is selected from the group consisting of Li, Na, K, and mixtures thereof; and
- MO is present in an amount of from 0 to 26 mole percent and M is selected from the group consisting of Mg, Ca, Sr, Ba, Zn, and mixtures thereof.

Technical Challenges & Tools

ontochem IT SOLUTIONS

Converting terms to meaning:

1. recognizing claim lists:

R₂O is present in an amount of from 0 to 26 mole percent and R is selected from the group consisting of Li, Na, K, and mixtures thereof; *recognizing syntax structures*

2. short terms:

does "K" mean potassium? context sensitive annotation: using "grey lists" - confidence increased from 0 by context

3. unusual Markush chemistry terms:

e.g. alloys: Sm₂(Co,Cu,Fe,Zr)₁₇ or Ca_{1-x-z}La_xSr_zFe_{2n-y}Co_y

e.g. liquid crystals: 3-HH-*-B-2

Markush Extraction: Compositions

48 1. mixture_part_component; mixture part component -mixture_part_component2 mixture_part₂ mixture partmixture_partproper itv proper ixture entity propert ib:dict units entity property ntity property ss_compositior dict substances value regexp inorgma value TEXT * regexp inorgmat * value dict quantifier 49 A ytterbium-phosphate glass comprising: 60 to 75 mole percent P2O5, 10 to 30 mole percent Yb2O3; and from 0 to 30 mole percent of a combination of two or more of the following mixture_part_component1 mixture part component mixture part component₂ brat.nlplab.org/ rege chemFormula (regexp cGroup) X2O3, R2O, and MO wherein; -substituent group -substituent_group -substituent_group2 substituent_group3 -substituent_groups -substituent_group4 -substituent classentity_proper ·scaffold· entity propert markush regexp cGroup value dict units regexp cGroup dict dict dictdict inorgadict substances X2O3 is present in an amount of from 0 to 26 mole percent and X is selected from the group consisting of AI, B, La, Sc, Y, and mixtures thereof; substituent_group3 -substituent_group--substituent_group1--substituent_group2 substituent_classentity propert scaffold entity_proper markush chemFormula cGroup * value dict units regexp cGroup dict dict dict inorgandict substances R2O is present in an amount of from 0 to 26 mole percent and R is selected from the group consisting of Li, Na, K, and mixtures thereof; and -substituent_groups substituent_group₆substituent_group4 substituent group -substituent group--substituent groups--substituent_group2 substituent class entity_property ntity proper scaffold fict units dict inorgma markush regexp cGroup ' value dict units regexp cGroup dict dict dict chemFormula cCdict substances lict magnitudes MO is present in an amount of from 0 to 26 mole percent and M is selected from the group consisting of Mg, Ca, Sr, Ba, Zn, and mixtures thereof.

ontochem

IT SOLUTIONS

ontochem IT SOLUTIONS

1. dictionary based named entity recognition

-substituent_group₁substituent_group substituent_group2 substituent groupssubstituent groupssubstituent group4substituent classentity_property entity property ruleComb;dict magnitudes scaffoldentity propert ruleComb:dict un markush dic dict dict dict dict inorgm dict substances regexp cGroup magnitudes regexp cGroup value dict units X2O3 is present in an amount of from 0 to 26 mole percent and X is selected from the group consisting of Al, B, La, Sc, Y, and mixtures thereof; magnitude unit substances confidence =.0inorganic materials

1. dictionary based named entity recognition

ontochem

IT SOLUTIONS

-substituent_group₁substituent_group substituent_group2 substituent groupssubstituent groupssubstituent group₄. substituent classentity_property entity property ruleComb;dict magnitudes scaffoldentity propert ruleComb;dict un markush regexp cGroup magnitudes regexp cGroup dic dict dict dict dict inorgm dict substances value dict units X2O3 is present in an amount of from 0 to 26 mole percent and X is selected from the group consisting of Al, B, La, Sc, Y, and mixtures thereof; Al B La Sc Y substances magnitude unit confidence =.3inorganic materials

1. dictionary based named entity recognition

ontochem

IT SOLUTIONS

1. dictionary based named entity recognition

2. regular expressions for potential chemistry

- 1. dictionary based named entity recognition
- 2. regular expressions
- 3. rule combiner

- 1. dictionary based named entity recognition
- 2. regular expressions
- 3. rule combiner
- 4. syntax pattern matcher

Markush Extraction: Result

ontochem IT SOLUTIONS

50 X2O3 is present in an amount of from 0 to 26 mole percent and X is selected from the group consisting of Al, B, La, Sc, Y, and mixtures thereof;

Pat_document-id	ITEM_ID	RELATION	CONCEPT_ID	MODULE	SOURCE_CONTEXT	SECTION	ROLE	ENTITY	CONCEPT	PROPERTY	UNIT	VALUE
US-20060039426- A1	57	[markush]	23200000014	relMatcher: 232000000014:1	X2O3 is present in an amount of from 0 to 26 mole percent and X is selected from the group consisting of Al, B, La, Sc, Y, and mixtures thereof;	claims						
	57-000						scaffold	X2O3	chemGroup	percentage	mole percent	from 0 to 26
	57-001						substituent class	х	chemGroup			
	57-002						substituent group	AI	inorgmat 229910052782: aluminium			
	57-003						substituent group	В	inorgmat 229910052796: boron			
	57-004						substituent group	La	inorgmat 229910052746:I anthanum			
	57-005						substituent group	Sc	inorgmat 229910052706:s candium			
	57-006						substituent group	Y	inorgmat 229910052727:y ttrium			
	57-007						substituent group	mixtures	substances 239000000203: mixtures			

text mining made possible:

US 7,081,279 B2: Chisso Corporation, liquid crystals

4

re-inventing chemical nomenclature:

Example 27

Composition Example 26

ontochem

SOLUTIONS

tables in US patent documents (2001-2017 August 2017)

• documents	8,436,770
• detected	10,747,205
• parsed	10,732,857
 normalized 	10,601,073
table structure:	
one taroup	3.340.523

00	09200	~P	0,010,	
mult	iple	tgroups	7,392,	,334

table content:

compositions	877,029
IC50/EC50	106,882
R-groups	102,018

Table Normalization & Correction

ontochem

PDF

OASIS: 5 tgroup: 1 theader (empty) + 5 tbody

TABLE 3

		Inhibitio	n (IC ₅₀) of	cellula	r prolifera	tion in A4	31, SKBR	3 and S	W620 cel	ls.		
				(Cellular G	rowth Inh	ibition IC.	₅₀ (μΜ)"	r			
		A4	31			SKB	R3			SW6	520	
Compound	$Oxic^b$	Deact.c	Anoxic ^d	HCR ^e	$Oxic^b$	Deact.c	Anoxic ^d	HCR ^e	$Oxic^b$	Deact.c	Anoxic ^d	HCR ^e
11	0.040		0.040	1.0	0.081		0.141	0.6	3.43		2.89	1.2
12	0.010		0.023	0.4	0.044		0.028	1.6	3.81		4.01	1.0
13	0.430		0.784	0.5	1.04		0.664	1.6	27.4		29.0	1.5
14	0.015		0.009	1.7	0.028		0.027	1.1	2.02		2.46	0.8
16	1.26		1.30	1.0	3.19		5.51	0.6	18.6		19.6	0.9
17	0.462	12	0.444	1.0	1.52	19	1.84	0.8	112.5	33	111.5	1.0
18	2.34	59	0.401	5.8	3.75	44	1.29	2.8	92.2	27	79.8	1.2
19	2.64	66	0.201	13.1	6.33	78	0.483	13.1	156.4	46	28.0	5.6
20	2.09	53	0.078	26.8	3.93	49	0.217	18.1	63.3	18	20.2	3.1
21	11.0	277	13.7	1.3	26.9	332	30.0	0.9	422.6	123	365.1	1.2
22	5.86	147	0.564	10.4	11.0	136	1.64	6.7	281.3	82	123.1	2.3
23	0.670	65	0.025	26.9	2.47	56	0.068	36.1	100.8	27	13.8	7.3
27	255.3	203	76.1	3.4	506.8	159	74.3	7.6	684.3	37	584.7	1.2

Footnotes for Table 3

^aDose-response curves were determined at 5 concentrations. Cells received a 24 hour exposure to test compounds before being continuously washed with drug-free media. The $IC_{50}(\mu M)$ values are the concentrations required to inhibit cell growth by 50%, as determined from the dose-response curves. Values are the average of between three and nine independent determinations (% CV < 20 in all cases).

^bExperiment performed entirely under oxic conditions.

^cFold reduction in oxic cellular growth inhibition relative to the parent kinase inhibitor.

^dThe first 4 hours of the 24 hour drug exposure was performed under anoxic conditions.

"Hypoxic Cytotoxicity Ratio = fold increase in cellular growth inhibition for cells receiving 4 hours of anoxia relative to cells that received only oxic conditions.

normalized+corrected **OC-XHTML**

1 thead, 1 tbody, 1 tfoot, 1 anchor text

The compounds of Table 3 were tested for their ability to inhibit the proliferation of three human carcinoma cell lines, selected to provide a comparison with literature precedent: (Isou et al, J Med Chem, 2001, 44, 2719-2734) A431 (epidermoid), which overexpresses erbB1; SKBR3 (breast), which overexpresses and to a lesser extent, erbB1; and SW620 (colon), which serves as a control line not expressing erbB1 or erbB2 to any significant extent. The cells were expressed to test compounds for either 24 hours under oxic conditions or for 4 hours under anxia followed by 20 hours under oxic conditions. They were then washed free of drug and included for a further 4 days. before being stained for cell survival with sulforhodamine B.

TABLE 3: Inhibition (IC50) of cellular proliferation in A431, SKBR3 and SW620 cells.

	Cellula	Cellular Growth Inhibition $IC_{50} (\mu M)^a$													
	A431				SKBR3				SW620						
Compound	Oxic ^b	Deact.c	Anoxic ^d	HCR ^e	Oxic ^b	Deact.c	Anoxic ^d	HCR ^e	Oxic ^b	Deact.c	Anoxic ^d	HCR ^e			
11	0.040		0.040	1.0	0.081		0.141	0.6	3.43		2.89	1.2			
12	0.010		0.023	0.4	0.044		0.028	1.6	3.81		4.01	1.0			
13	0.430		0.784	0.5	1.04		0.664	1.6	27.4		29.0	1.5			
14	0.015		0.009	1.7	0.028		0.027	1.1	2.02		2.46	0.8			
16	1.26		1.30	1.0	3.19		5.51	0.6	18.6		19.6	0.9			
17	0.462	12	0.444	1.0	1.52	19	1.84	0.8	112.5	33	111.5	1.0			
18	2.34	59	0.401	5.8	3.75	44	1.29	2.8	92.2	27	79.8	1.2			
19	2.64	66	0.201	13.1	6.33	78	0.483	13.1	156.4	46	28.0	5.6			
20	2.09	53	0.078	26.8	3.93	49	0.217	18.1	63.3	18	20.2	3.1			
21	11.0	277	13.7	1.3	26.9	332	30.0	0.9	422.6	123	365.1	1.2			
22	5.86	147	0.564	10.4	11.0	136	1.64	6.7	281.3	82	123.1	2.3			
23	0.670	65	0.025	26.9	2.47	56	0.068	36.1	100.8	27	13.8	7.3			
27	255.3	203	76.1	3.4	506.8	159	74.3	7.6	684.3	37	584.7	1.2			
Footnotes for	Table 3														

^aDose-response curves were determined at 5 concentrations. Cells received a 24 hour exposure to test compounds before being continuously washed with drug-free media. The IC₅₀ (μ M) values are the concentrations required to inhibit cell growth by 50%, as determined from the dose-response curves. Values are the average of between three and nine independent determinations (% CV < 20 in all cases).

^bExperiment performed entirely under oxic conditions.

^cFold reduction in oxic cellular growth inhibition relative to the parent kinase inhibitor.

^dThe first 4 hours of the 24 hour drug exposure was performed under anoxic conditions.

*Hypoxic Cytotoxicity Ratio = fold increase in cellular growth inhibition for cells receiving 4 hours of anoxia relative to cells that received only oxic conditions.

US-20060039426-A1: Novel ytterbium-phosphate glass

PDF

TABLE 5													
Component	21	22	23	24	25	26	27	28	29	30			
P_2O_5	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	62.0			
Yb_2O_3	15.0	15.0	15.0	15.0	14.0	15.0	15.0	15.0	15.0	15.0			
BaO	18.0	10.0	13.0	13.0	10.0	13.0	17.0	17.0	17.0	17.0			
SrO	0.0	0.0	0.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0			
CaO	0.0	0.0	3.0	0.0	3.0	3.0	3.0	3.0	3.0	3.0			
ZnO	3.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Y_2O_3	0.0	0.0	5.0	0.0	1.0	5.0	1.0	1.0	1.0	1.0			
B_2O_3	0.0	0.0	0.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0			
Er_2O_3	10.0	0.0	0.0	0.0	0.0	5.0	10.0	15.0	0.0	0.0			
Nd ₂ O ₃	0.0	10.0	0.0	0.0	20.0	0.0	0.0	5.0	15.0	12.5			
Ho_2O_3	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0			
Tm_2O_3	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	5.0			

OC|miner OC_XHTML

TABLE 5										
Component	21	22	23	24	25	26	27	28	29	30
P ₂ O ₅	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	62.0
Yb ₂ O ₃	15.0	15.0	15.0	15.0	14.0	15.0	15.0	15.0	15.0	15.0
BaO	18.0	10.0	13.0	13.0	10.0	13.0	17.0	17.0	17.0	17.0
S-0	0.0	0.0	0.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0
caO	0.0	0.0	3.0	0.0	3.0	3.0	3.0	3.0	3.0	3.0
ZnO	3.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Y_2O_3	0.0	0.0	5.0	0.0	1.0	5.0	1.0	1.0	1.0	1.0
B ₂ O ₃	0.0	0.0	0.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
Er ₂ O ₃	10.0	0.0	0.0	0.0	0.0	5.0	10.0	15.0	0.0	0.0
Nd ₂ O ₃	0.0	10.0	0.0	0.0	20.0	0.0	0.0	5.0	15.0	12.5
Ho ₂ O ₃	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0
Tm_2O_3	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	5.0

US-20060039426-A1: Novel ytterbium-phosphate glass

annotated XML

OC|miner OC_XHTML

TABLE 5											- 1	TABLE 5										
Component	21	22	23	24	25	26	27	28	29	30		Component	21	22	23	24	25	26	27	28	29	30
P205	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	62.0		P ₂ O ₅	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	62.0
Yb ₂ O ₃	15.0	15.0	15.0	15.0	14.0	15.0	15.0	15.0	15.0	15.0		Yb ₂ O ₃	15.0	15.0	15.0	15.0	14.0	15.0	15.0	15.0	15.0	15.0
BaÖ	18.0	10.0	13.0	13.0	10.0	13.0	17.0	17.0	17.0	17.0		BaO	18.0	10.0	13.0	13.0	10.0	13.0	17.0	17.0	17.0	17.0
SrO	0.0	0.0	0.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0		Sr0	0.0	0.0	0.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0
CaO	0.0	0.0	3.0	0.0	3.0	3.0	3.0	3.0	3.0	3.0		CaO	0.0	0.0	3.0	0.0	3.0	3.0	3.0	3.0	3.0	3.0
ZnÒ	3.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		ZnO	3.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Y_2O_3	0.0	0.0	5.0	0.0	1.0	5.0	1.0	1.0	1.0	1.0		Y_2O_3	0.0	0.0	5.0	0.0	1.0	5.0	1.0	1.0	1.0	1.0
B ₂ O ₃	0.0	0.0	0.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0		B ₂ O ₃	0.0	0.0	0.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
Er ₂ O ₃	10.0	0.0	0.0	0.0	0.0	5.0	10.0	15.0	0.0	0.0		Er ₂ O ₃	10.0	0.0	0.0	0.0	0.0	5.0	10.0	15.0	0.0	0.0
Nd ₂ O ₃	0.0	10.0	0.0	0.0	20.0	0.0	0.0	5.0	15.0	12.5		Nd ₂ O ₃	0.0	10.0	0.0	0.0	20.0	0.0	0.0	5.0	15.0	12.5
Ho ₂ O ₃	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0		Ho ₂ O ₃	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0
Tm ₂ O ₃	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	5.0		Tm_2O_3	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	5.0

US-20060039426-A1: Novel ytterbium-phosphate glass

annotated XML

extracted US-20060039426-A1_table_5.csv:

TABLE 5											
Component	21	22	23	24	25	26	27	28	29	30	
P ₂ O ₅	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	62.0	
Yb ₂ O ₃	15.0	15.0	15.0	15.0	14.0	15.0	15.0	15.0	15.0	15.0	
BaÖ	18.0	10.0	13.0	13.0	10.0	13.0	17.0	17.0	17.0	17.0	
SrÖ	0.0	0.0	0.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0	
CaO	0.0	0.0	3.0	0.0	3.0	3.0	3.0	3.0	3.0	3.0	
ZnÒ	3.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Y_2O_3	0.0	0.0	5.0	0.0	1.0	5.0	1.0	1.0	1.0	1.0	
B ₂ O ₃	0.0	0.0	0.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0	
Er ₂ O ₃	10.0	0.0	0.0	0.0	0.0	5.0	10.0	15.0	0.0	0.0	
Nd ₂ O ₃	0.0	10.0	0.0	0.0	20.0	0.0	0.0	5.0	15.0	12.5	
Ho ₂ O ₃	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	
Tm ₂ O ₃	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	5.0	

SECTION	ENTITY	NAME	CONCEPT	PROPERTY	VALUE
description					
	mixture	22	substances		
	mixture part	P2O5	inorgmat	percentage	64
	mixture part	Yb2O3	inorgmat	percentage	15
	mixture part	BaO	inorgmatl229910014179:BaO	percentage	10
	mixture part	SrO	inorgmatl229910045055:SrO	percentage	0
	mixture part	CaO	chemCompoundl 190000021704:calcium monoxide	percentage	0
	mixture part	ZnO	chemCompoundl 190000022155:zinc monoxide	percentage	11
	mixture part	Y2O3	inorgmatl 229910010292:Yttrium(III) oxide	percentage	0
	mixture part	B2O3	inorgmatl 229910011255:B2O3	percentage	0
	mixture part	Er2O3	inorgmatl 229910000125:erbium(III) oxide	percentage	0
	mixture part	Nd2O3	inorgmatl 229910014145:Nd2–O3	percentage	10
	mixture part	Ho2O3	inorgmatl 229910000133:holmium(III) ovide	nercentage	0
	mixture part	Tm2O2	inoramat	percentage	0
	SECTION description	SECTION ENTITY description mixture part	SECTION ENTITY NAME description mixture 22 mixture part P2O5 mixture part P2O5 mixture part P3O5 mixture part BaO mixture part CaO mixture part ZnO mixture part Y2O3 mixture part B2O3 mixture part Er2O3 mixture part Nd2O3 mixture part H02O3 mixture part H02O3	SECTION ENTITY NAME CONCEPT description mixture 22 substances mixture part P2O5 inorgmat mixture part Yb2O3 inorgmat mixture part Yb2O3 inorgmat mixture part BaO inorgmatl229910014179:BaO mixture part SrO inorgmatl229910045055:SrO mixture part CaO chemCompoundl mixture part CaO monoxide mixture part ZnO 19000022155:zinc monoxide mixture part Y2O3 oxide mixture part Y2O3 oxide mixture part B2O3 22991001255:B2O3 inorgmatl 22991000125:erbium(III) mixture part Er2O3 oxide inorgmatl 2299100114145:Nd2–O3 inorgmatl 229910000133:holmium(III) mixture part H02O3 oxide	SECTION ENTITY NAME CONCEPT PROPERTY description mixture 22 substances

Patent Classification

ontochem IT SOLUTIONS

Markush Classification Pipeline:

• UIMA (Unstructured Information Management Architecture)

tokenization, annotation, feature extraction

• UIMA + Machine Learning = <u>ClearTK</u>

classification using SVM (Support Vector Machine) + Random Forrests

Increase word frequencies: stemming

"stems", "stemmer", "stemming", "stemmed" => "stem" "fishing", "fished", "fisher" => "fish"

Increase word frequencies: Named Entity normalization

"SiO2", "Silicon oxide", "Quartz", "Quartz silica" => "silicium dioxide" "Al2-O3", "aluminium(III) oxide", "aloxide" => "Al2O3"

Table Classification & Extraction

ontochem IT SOLUTIONS

TABLE 8

identifying the right table: **anchoring text**

US20150246842A1	Table 3	The following glasses in Table 3 were prepared at very low total iron oxide levels with cerium oxide contents from	Component	HIRA Lithium glass Campaign A	LIRA Lithium glass Campaign B
	anchoring text:	0.50 wt. % down to 0 wt. %. The data includes the calculated batch data after the batch has lost water and carbon dioxide as a result of the glassmaking process, the data for the three glasses that were analyzed for composition, viscosity data, liquidus data, and spectral	$\begin{array}{c} \mathrm{SiO}_2 \\ \mathrm{Na}_2\mathrm{O} \\ \mathrm{Li}_2\mathrm{O} \\ \mathrm{Al}_2\mathrm{O}_3 \\ \mathrm{ZrO}_2 \\ (\mathrm{Al}_2\mathrm{O}_3 + \mathrm{ZrO}_2) \\ \mathrm{FeO} \\ \mathrm{FeO} \\ \mathrm{FeO} / \mathrm{Fe}_2\mathrm{O}_3 \\ \mathrm{CeO}_2 \end{array}$	59-63 wt. % 10-13 wt. % 4-5.5 wt. % 15-23 wt. % 2-5 wt. % 19-25 wt. % 0.02-0.05 wt. % 0.2-0.4 0.00	60-63 wt. % 10-12 wt. % 4-5.5 wt. % 17-19 wt. % 3.5-5 wt. % 21.5-24 wt. % 0.001-0.010 wt. % 0.005-0.15
		data.	Fe_2O_3 (total iron)	800-1200 ppm	50-less than 800

	n	n	0	ナつ	+-	N	
а			U	la	It	-0	
~			-		~ ~		

			TABLE 8			
Component		HIRA <mark>Lithium</mark>	glass Campaign A	LIRA <mark>Lithium</mark> g	lass Campaign B	
SiO ₂	59-63	wt. %		60-63		%
Na ₂ O	10-13	wt. %		10-12		wt. %
Li ₂ Ō	4-5.5	wt. %		4-5.5		wt. %
Al_2O_3	15-23	wt. %		17-19		wt. %
ZrO ₂	2-5	wt. %		3.5-5		wt. %
(Al ₂ O ₃ + ZrO ₂)	19-25	wt. %		21.5-24		wt. %
FeO	0.02-0.05	wt. %		0.001-0.010		wt. %
<u>FeO/Fe₂O3</u>		0.2-0.4		0.005-0.15		
CeO ₂		0.00		0.02-0.45		wt. %
<u>Fe₂O3</u> (total <mark>iron</mark>)	800-1200	ppm		50-less than 800	1	ppm

Table Extraction Problems

ontochem

problems in current Markush data extraction:

lacking standardization in inorganic chemistry lacking formalization of conditional data overdetermined data

QA tools

annotated:

Component	HIRA Lithium glass Campaign A	LIRA Lithium glass Campaign B
SiO ₂	59-63 wt. %	60-63 wt. %
Na ₂ O	10-13 wt. %	10-12 wt. %
Li ₂ O	4-5.5 wt. %	4-5.5 wt. %
Al ₂ O ₃	15-23 wt. %	17-19 wt. %
ZrO ₂	2-5 wt. %	3.5-5 wt. %
$(Al_2O_3 + ZrO_2)$	19-25 wt. %	21.5-24 wt. %
FeO	0.02-0.05 wt. %	0.001-0.010 wt. %
FeO/Fe ₂ O ₃	0.2-0.4	0.005-0.15
CeO ₂	0.00	vt. %
Fe ₂ O ₃ (total iron)	800-1200 ppm	50-less than 800

TABLE 8

				TABLE 8				
	Component		HIRA <mark>Lithium</mark>	glass Campaign A	LIRA <mark>Lithium</mark> glass	s Campaign B		
	SiO ₂	59-63	wt. %		60-63			%
	Na ₂ O	10-13	wt. %		10-12		wt.	%
	Li ₂ O	4-5.5	wt. %		4-5.5		wt.	%
	Al_2O_3	15-23	wt. %		17-19		wt.	%
	ZrO ₂	2-5	wt. %		3.5-5		wt.	%
	(Al ₂ O ₃ + ZrO ₂)	19-25	wt. %		21.5-24		wt.	%
	FeO	0.02-0.05	wt. %		0.001-0.010		wt.	%
condition	<u>FeO</u> / <u>Fe₂O3</u>		0.2-0.4		0.005-0.15			
	CeO2		0.00		0.02-0.45		wt.	%
	Fe ₂ O ₃ (total <mark>iron</mark>)	800-1200	ppm		50-less than 800		ppn	n

Alloys Data Extraction

ontochem IT SOLUTIONS

Relationship extraction

Journal of Magnetism and Magnetic Materials 242-245 (2002) 1277-1283

Invited paper

Nanocrystalline high performance permanent magnets

O. Gutfleisch*, A. Bollero, A. Handstein, D. Hinz, A. Kirchner, A. Yan, K.-H. Müller, L. Schultz

Institute of Solid State and Materials Research, IFW Dresden, P.O. Box 270016, 01171 Dresden, Germany

Abstract

Recent developments in nanocrystalline rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Permanent magnets; Nanocrystalline materials; Exchange coupling; Texture; Hydrogen absorption

"8th Multiscale Materials Modeling" international conference MMM 2016, Dijon, France

grains after hot deformation. A remanence of $B_r = 1.3 \text{ T}$ and a $(BH)_{max} = 326 \text{ kJ/m}^3$ were measured for the MQU-F die-upset magnet. The loop shape $((BH)_{max} = 307 \text{ kJ/m}^3)$ and the hot workability of the $Pr_{14.7}Fe_{77.3}B_{8.0}$ die-upset magnet made from intensively milled powder are excellent and it can be expected that

Extracted Data: alloys + magnetism

ontochem IT SOLUTIONS

CONCEPT	SOURCE_CONTEXT	CREATED_BY_MODULE	PUB_DATE	BIB_DESCRIPTION	alloy	alloy_ELEMENTS	FORMULA	property	unit	value
[coercivity]	Nd–Fe–B magnets (µ0Hc	relMatcher;frameEnricher	2014	Acta Materialia 82, 336-343.	Nd–Fe–B	Nd;Fe;B		μ0Нс	1	1.2
[coercivity]	Nd–Fe–B magnets is reducedt high temperature (µ0Hc	relMatcher;frameEnricher	2012	Scripta Materialia 67 (6), 536-541.	Nd–Fe–B	Nd;Fe;B		µ0Hc		
[coercivity]	µ0Hc(T) in (Ba1-xLax)- (Fe12-xCox)O19	relMatcher	2002	Physica B: Physics of Condensed Matter 319 (1), 127-132.	(Ba1-xLax)-(Fe12-xCox)O19	La;Ba;Co;Fe;O		µ0Нс		
[coercivity]	$\mu0\text{Hc}\approx2.7$ T) have been recently achieved in heavy rare earth free NdFeB	ruleComb;frameEnricher	2012	Acta Materialia 60 (9), 3783-3788.	NdFeB	Nd;Fe;B		µ0Нс	т	2.7
[coercivity]	NdFeB/Ta films (µ0Hc	ruleComb;frameEnricher	2012	Acta Materialia 60 (9), 3783-3788.	NdFeB	Nd;Fe;B		µ0Hc	Т	2.7
[coercivity]	Nd–Fe–B sintered magnets with a grain size of \sim 1 μ m and μ 0Hc	relMatcher	2014	Acta Materialia 82, 336-343.	Nd–Fe–B	Nd;Fe;B		µ0Нс	т	2
[coercivity]	µ0Hc(T) J FePt/Fe3O4	TableCreator	2011	Handbook of Magnetic Materials 19, 291-407.	Fe3O4	Fe;O	Fe72.36O27. 64	µ0Hc		
[coercivity]	µ0Hc(T) J Bulk Fe61.5Pt38.5	TableCreator	2011	Handbook of Magnetic Materials 19, 291-407.	Fe61.5Pt38.5	Pt;Fe	Pt38.5Fe61.5	µ0Hc		
[coercivity]	µ0Hc(T) J Electrodeposited Fe37Pt38O25	TableCreator	2011	Handbook of Magnetic Materials 19, 291-407.	Fe37Pt38O25	Pt;Fe;O	Pt38Fe37O25	µ0Hc		
[coercivity]	µ0Hc(T) J Nanocrystalline Fe50Pt50	TableCreator	2011	Handbook of Magnetic Materials 19, 291-407.	FePt	Pt;Fe		µ0Hc		
[coercivity]	µ0Hc(T) J Fe50Pt50	TableCreator	2011	Handbook of Magnetic Materials 19, 291-407.	FePt	Pt;Fe		µ0Hc		
[coercivity]	µ0Hc(T) J Nanocrystalline Fe60Pt40	TableCreator	2011	Handbook of Magnetic Materials 19, 291-407.	Fe3Pt	Pt;Fe	Pt53.8Fe46.2	µ0Hc		
[coercivity]	µ0Hc(T) J Bulk Fe61.5Pt38.5 alloy	TableCreator	2011	Handbook of Magnetic Materials 19, 291-407.	alloy			µ0Hc		
[coercivity]	µ0Hc(T) J FePt	TableCreator	2011	Handbook of Magnetic Materials 19, 291-407.	FePt	Pt;Fe		µ0Hc		
[coercivity]	Fe80Ta8C12 films showed an amos \approx 1.7 T and a low $\mu0Hc$	ruleComb;frameEnricher	2011	Handbook of Magnetic Materials 19, 291-407.	Fe80Ta8C12	Ta;Fe;C	Ta8Fe80C12	µ0Hc	mT	0.03
[coercivity]	Fe80Ta8C12 films showed an amorphous structure with low saturation magnetisation (Js \approx 0.75 T) and coercivity μ 0Hc	ruleComb;frameEnricher	2011	Handbook of Magnetic Materials 19, 291-407.	Fe80Ta8C12	Ta;Fe;C	Ta8Fe80C12	µ0Hc	mT	1.8
[coercivity]	SmFeN powder: µ0Hc	ruleComb;frameEnricher	2012	Scripta Materialia 67 (2), 153-156.	SmFeN	Sm;Fe;N		µ0Hc	Т	1.2
[coercivity]	Sm–Fe–N magnets D. Prabhualarge coercivity of µ0Hc	ruleComb;frameEnricher	2012	Scripta Materialia 67 (2), 153-156.	Sm-Fe-N	Sm;Fe;N		µ0Hc	т	2.75
[coercivity]	Sm–Fe–N bonded magnet with the maximum energy product (BH)max = 158 kJ m–3 and μ 0Hc	ruleComb;frameEnricher	2012	Scripta Materialia 67 (2), 153-156.	Sm-Fe-N	Sm;Fe;N		µ0Нс	т	0.8
[coercivity]	Sm-Fe-N bonded magnet with µ0Hc	ruleComb;frameEnricher	2012	Scripta Materialia 67 (2), 153-156.	Sm-Fe-N	Sm;Fe;N		µ0Hc	Т	1.9
[coercivity]	Sm2Fe17Nx compacts at 435 °C results in a substantial enhancement of coercivity to u0Hc.	ruleComb:frameEnricher	2012	Scripta Materialia 67 (2) 153-156	Sm2Ee17Nx	Sm:Fe:N		u0Hc	т	2 75
[coordinate]		.a.e.e.binb,irumeEmforter	2012	Physica B: Physics of Condensed	0 <u>2</u> . 01110	0,1 0,11		porio		2.75
[coercivity]	U2Fe13Si4 U2Fe µ0Hc	TableCreator	2002	Matter 319 (1), 208-219.	U2Fe13Si4	U;Fe;Si		µ0Hc	Т	3.1

OC|**processor** UIMA document processing pipeline, including modules:

name-2-chemistry

recognizing chemical terms: dictionary terms, IUPAC names, formulas, alloys, polymers, liquid crystals, peptides, DNA & RNA sequences, MolPuzzler

rule combiner

rule based entity recognition, e.g. "mdm2 antibody", "microcrystalline cellulose"

pattern matcher

recognizes syntax pattern, e.g. "a group of A, B, C"

document-2-table&image

extracts and corrects tables and images

frame enricher extracts complex relationships

relationship extractor extracts defined relationships

Thanks to...

ontochem IT SOLUTIONS

OIS team:

Claudia Bobach, Timo Böhme, Matthias Irmer, Tino Müller, Konstantin Kruse

Financial Support:

